Using Genomics for Safer, Personalized Medicine Choices for Kids

A new research study at Boston Children’s Hospital, in partnership with the Medical College of Wisconsin (MCW) and the Children’s Hospital of Wisconsin Research Institute, is using genetic information to predict children’s reactions to medications. The goal is to enable clinicians to select a more personalized therapy for each patient.

Personalized medicine for kids

Biomarker Bulletin: July 24, 2013

Biomarker Bulletin is an occasionally recurring update of news focused on biomarkers aggregated at BiomarkerCommons.org. Biomarkers are physical, functional or biochemical indicators of normal physiological or disease processes. The individualization of disease management — personalized medicine — is dependent on developing biomarkers that promote specific clinical domains, including early detection, risk, diagnosis, prognosis and predicted response to therapy.

Biomarker Commons

Trade Group Study: Hundreds of Rare Disease Drugs in Development

According to a new report released last month by the trade group Pharmaceutical Research and Manufacturers of America (PhRMA), the biopharmaceutical pipeline is innovative and robust, with a high percentage of potential first-in-class medicines (meaning a new treatment where nothing currently exists) targeting diseases with limited treatment options. In addition to identifying medicines in development for conditions and diseases such as septic shock, ovarian cancer, sickle cell disease, and Lou Gehrig’s disease (amyotrophic lateral sclerosis), which haven’t had any new product approvals in the last ten years, the report offers positive news for the rare disease community: one third of the products currently in clinical development have a rare disease designation by the U.S. Food and Drug Administration (FDA).

PhRMA

Pluripotent Stem Cells and the Nobel Prize for Medicine

nobel medal in medicineThe 2012 Nobel Prize in Physiology or Medicine was announced earlier this week. The prize was awarded to two scientists for their work on reprogramming mature cells to become pluripotent.

The prize of 10-million-Swedish-krona (US$1.5-million) was divided, one half jointly to Sir John B. Gurdon, age 79, at the Gurdon Institute, Cambridge, United Kingdom, and Shinya Yamanaka, age 50, at Kyoto University, Kyoto, Japan and the Gladstone Institutes, San Francisco, California, USA, for the discovery that mature, specialized cells can be reprogrammed to become immature cells capable of developing into all tissues of the body.

Biomarker Bulletin: January 30, 2012

Biomarker Bulletin is an occasionally recurring update of news focused on biomarkers aggregated at BiomarkerCommons.org. Biomarkers are physical, functional or biochemical indicators of normal physiological or disease processes. The individualization of disease management — personalized medicine — is dependent on developing biomarkers that promote specific clinical domains, including early detection, risk, diagnosis, prognosis and predicted response to therapy.

Biomarker Commons