Pluripotent Stem Cells and the Nobel Prize for Medicine

nobel medal in medicineThe 2012 Nobel Prize in Physiology or Medicine was announced earlier this week. The prize was awarded to two scientists for their work on reprogramming mature cells to become pluripotent.

The prize of 10-million-Swedish-krona (US$1.5-million) was divided, one half jointly to Sir John B. Gurdon, age 79, at the Gurdon Institute, Cambridge, United Kingdom, and Shinya Yamanaka, age 50, at Kyoto University, Kyoto, Japan and the Gladstone Institutes, San Francisco, California, USA, for the discovery that mature, specialized cells can be reprogrammed to become immature cells capable of developing into all tissues of the body.

Childhood Cancer Linked to Delays in Developmental Milestones

Infants and toddlers who have been treated for cancer tend to reach certain developmental milestones later than do their healthy peers, say researchers at the National Institutes of Health (NIH) and in Italy. The findings show that delays may occur early in the course of treatment and suggest that young children with cancer might benefit from such early interventions as physical or language therapy.

Child with cancer

The Promise of Stem Cells to Repair the Heart

A number of recent advances in stem cell biology are poised to transform therapeutic approaches to a variety of cardiovascular diseases. In the July issue of the journal Cell Stem Cell, researchers report one such advance, demonstrating that they can direct mouse embryonic stem cells to develop into an embryonic cell layer called the mesoderm, which can differentiate (meaning become different in the process of development) into the heart, blood and other tissues [1].

Exactly What are Stem Cells?

The ethical and moral debate over the use of stem cells has taken center stage over the past decade. Stem cells are of great medical interest, since they have the potential to develop into almost any type of cell in the body. Regenerative medicine focuses on the potential uses of stem cells in medicine and how they can provide effective treatment for a range of diseases.

Stem cells have the capacity to divide indefinitely to replenish other cells in the body. When a stem cell divides, each daughter cell can remain a stem cell or become a more specialized cell, such as a red blood cell, a muscle cell or a nerve cell. An increasing body of evidence also suggests that molecular pathways and properties associated with normal stem cells is relevant to cancer development [1].